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Abstract. In recent years, Support Vector Machines (SVMs) have been
successfully developed and have become powerful tools for pattern recog-
nition and machine learning. Although SVMs have shown excellent clas-
sification and prediction performance in many real applications, the pa-
rameters setting is very crucial to the SVMs’ performance. The k-fold
cross-validation (k-fold CV) and the leave-one-out cross-validation (LOOCV)
are two popular methods to obtain the best parameters setting. However,
the computational costs of them are prohibitively expensive, especially
for large-scale problems. Based on the observation of Smooth Support
Vector Machine (SSVM) updating from the computation point of view,
we proposed two efficient updating strategies by the Sherman-Morrison-
Woodbury formula to reduce the cost of finding the Hessian inverse in
this work. We introduced our two updating strategies in the k-fold CV
and the LOOCV. It will dramatically reduce the computational cost and
still can have the exact answers. In the experiments, we demonstrated the
effectiveness of SSVM with we proposed strategies on several datasets.
Two different types of datasets are chosen to demonstrate the advantage
of two different strategies. Our updating strategies can be applied to any
learning algorithm which it solved iteratively and involved the Hessian
inverse in each iteration, such as Smooth Support Vector Machine for ε-
Insensitive Regression (ε-SSVR), Least-Square Support Vector Machine
(LSSVM), Training SVM in the Primal, Second-Order Online Perceptron
Algorithm and so forth.

Keywords: Support Vector Machine, Sherman-Morrison-Woodbury For-
mula, Cross-Validation, Hessian Inverse, Newton’s Method.

In recent years, Support Vector Machines (SVMs) [4] have been successfully
developed and have become powerful tools for pattern recognition and machine
learning such as classification problems and so forth. In the classification prob-
lems, SVMs determine an optimal separating hyperplane that classify the data
instances into the different classes. The “optimal” means that the separating hy-
perplane has the best generalization ability for the unseen data instances based
on the statistical learning theory [24]. Traditionally, most of the optimization
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problems of SVMs are solved in the dual space. At the same time, there are some
variant SVMs in the primal space have been developed, such as Smooth Support
Vector Machine (SSVM) [17], Training SVM in the Primal [8] and so forth. In
SSVM, smoothing methods are applied to generate and solve an unconstrained
smooth reformulation of the SVM in the primal space using a completely arbi-
trary kernel. A fast Newton-Armijo algorithm for solving the SSVM converges
globally and quadratically. However, finding the Hessian inverse in each SSVM
iterations is very costly and becomes the bottleneck of SSVM.

Although SVMs have shown excellent classification and prediction perfor-
mance in many real world applications, the parameters setting is very crucial to
the SVMs’ performance [2, 15]. The most common method to obtain the best
parameters is the k-fold cross-validation (k-fold CV). An extreme form of the k-
fold CV is the leave-one-out cross-validation (LOOCV), where only one instance
is treated as test data and the rest part play the role as training data at each
time. The LOOCV also is a widely used measuring the generalization ability of
the model, because it has been shown to give an almost unbiased estimator of
the generalization ability of the model [2, 13]. However, the computational costs
of them are prohibitively expensive, especially for large-scale problems.

In this work, we proposed two efficient updating strategies by the observation
of SSVM updating from the computation point of view, called “Strategy I” and
“Strategy II”, to reduce the cost of finding the Hessian inverse. Both our strate-
gies belong to the incremental/decremental updating schemes. We introduced
our two updating strategies in the k-fold CV and the LOOCV. In the experi-
ments, we demonstrated the effectiveness of SSVM with we proposed strategies
on several datasets such as Face [22], Ionosphere [3], Pima [3], Colon [1] and
Leukemia [12]. Our updating strategies can be applied to any learning algorithm
which it solved iteratively and involved the Hessian inverse in each iteration,
such as Smooth Support Vector Machine for ε-Insensitive Regression (ε-SSVR)
[18], Least-Square Support Vector Machine (LSSVM) [23], Training SVM in the
Primal [8], Second-Order Online Perceptron Algorithm [6] and so forth.

This paper is organized as follows. We briefly introduce the SSVM in Section
1. In Section 2, we describe the observation of SSVM updating from computation
point of view. Section 3 shows how to apply our Hessian inverse updating strate-
gies to obtain the exact results of the k-fold CV and the LOOCV efficiently. The
numerical experiments are shown in Section 4. In Section 5, we conclude this
work and future research direction.

1 Smooth Support Vector Machine (SSVM)

In SSVM, the binary problem of classification on ` instances in the n-dimensional
real space Rn. The standard linear SSVM is given by the following:

min
b,w

fβ (b, w) = 1
2 (‖w‖22 + b2) + c

2‖p(1− Y (Xw + 1b), β)‖22 , (1)

where p(·) is the p-function [17], X ∈ R`×n is the data matrix, 1 is a column
vector of ones of ` dimension, w is the normal vector, b determines their location
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relative to the origin, Y is the diagonal matrix with ones or minus ones along its
diagonal to specify the membership of each instance, in other words, Yjj = ±1
depending on whether the label of jth data instance is +1 or −1, and c is a
positive value for balancing the training error and the regularization term in the
objective function. Too large c might cause the overfitting problem.

The objective function in Problem(1) is twice differentiable, then Newton’s
method which is quadratically convergent algorithm can be applied. However,
Newton’s method might lead to the oscillation phenomenon. In order to avoid
this phenomenon, the Armijo step-size rule is employed to make the solution
convergent globally. In our implementation, we use following formulations to
calculate the gradient and the Hessian matrix.

g = lim
β→∞

∇fβ (b, w) =
[

b− 1>Y (v)+
w −X>Y (v)+

]
=

[
b
w

]
−A>Y (v)+ , (2)

H = lim
β→∞

∇2fβ(b, w) = I + c

[
1>S1 1>SX
X>S1 X>SX

]
= I + cA>SA , (3)

where

v = 1−Y (Xw + 1b) , (s∞)j =





1 if vj > 0
1
2 if vj = 0
0 if vj < 0

, A =
[
1 | X ]

and S = diag(s∞) .

We use g(i) and H(i) to denote the gradient and the Hessian matrix at ith

iteration. The conventional SSVM algorithm is described in [16, 17].
By applying the kernel trick [4, 24], which uses a kernel function to represent

the inner product of a pair of training instance images in the feature space,
linear SSVM can be extended to the nonlinear SSVM easily. By the results of
Generalized Support Vector Machines (GSVM) [20], we only need to do simply
change the input data from the data matrix X to the nonlinear kernel matrix
Ker(X, X>) for the nonlinear case. The nonlinear decision function is

(Y u)>Ker(X, x) + b = 0 .

More details about SSVM can be found in [16, 17].

2 Observation of SSVM Updating

In SSVM training procedure, we observed that the values of (s∞)j is 0 for those
Xj with 1 − Yjj(Xjw + b) < 0, where Xj is the jth row of X which is a row
vector in Rn and Yjj is the label corresponding to Xj . This kind of training
instances will not have any contribution in constructing the gradient and the
Hessian matrix in Eq(2) and Eq(3). For each iteration, we partition the indices
of entire training set T into the two sets, SV (b(i), w(i), T ) and NSV (b(i), w(i), T ).

SV (b(i), w(i), T ) = {j | 1− Yjj(Xjw(i) + b(i)) ≥ 0, (Xj , Yjj) ∈ T, j = 1, 2, . . . , `}
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NSV (b(i), w(i), T ) = {j | 1−Yjj(Xjw(i)+b(i)) < 0, (Xj , Yjj) ∈ T, j = 1, 2, . . . , `}

In the ith iteration, some indices in SV (b(i), w(i), T ) may come from SV (b(i−1), w(i−1), T )
or NSV (b(i−1), w(i−1), T ). For example, if the indices in NSV (b(i−1), w(i−1), T )
are moved to SV (b(i), w(i), T ), its means that the instance corresponding its in-
dex change to tentative support vector from tentative non-support vector at ith

iteration.
We denote by r(i) the number of the instances which need to be removed

and to be added at ith iteration. In other words, r is the number of the indices
migrate across the SV set and NSV set in each iteration during training SSVM.
We use the set operators, intersection ∩ and difference \ to describe the change
between two iterations and define

K(i) = SV (b(i−1), w(i−1), T ) ∩ SV (b(i), w(i), T ) ,

D(i) = SV (b(i−1), w(i−1), T ) \ SV (b(i), w(i), T ) ,

I(i) = SV (b(i), w(i), T ) \ SV (b(i−1), w(i−1), T ) .

Then, we can have a simple representation

ASV(i−1) =
[

AK(i)

AD(i)

]
, ASV(i) =

[
AK(i)

AI(i)

]
,

where ASV(i) , AK(i) , AD(i) and AI(i) are the sub-matrix of A formed by selecting
specific rows of A by SV (b(i), w(i), T ), K(i), D(i) and I(i), respectively. We note
that r(i) =| D(i) | + | I(i) |.

We compare the number of tentative support vectors `sv and r in each itera-
tion on a certain datasets. According to Figure 1, we observe that r is decreasing
rapidly iteration by iteration. This phenomenon is a key for reducing the com-
putational cost for finding the Newton direction z.
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Fig. 1. The number of the support vectors `sv and r at each iteration
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3 Hessian Inverse Updating Strategies

Although the main cost of finding the Newton direction z is solving the linear
system Hz = −g or finding the Hessian inverse, there are some useful tricks to
compute the inverse of a specific matrix such as Sherman-Morrison-Woodbury
formula [14]. In this section, we derived two efficient updating strategies for
finding the Hessian inverse which is involved in training a SSVM by Sherman-
Morrison-Woodbury formula, called strategy I and strategy II.

During the updating process of the Hessian inverse, we introduce the decre-
mental and incremental operations. The decremental/incremental operation means
that to remove/add the information of the instances that will be removed/added
from/to current Hessian inverse.In our implementation, we perform the decre-
mental operation first, then incremental operation.

Note that we denote n the dimensionality of the gradient and the Hessian
matrix and use the notation A to represent

[
1 | X ]

in the rest of this paper for
simplicity.

3.1 Hessian Inverse Updating Strategy I

Sherman-Morrison-Woodbury formula is

(T + UCV )−1 = T−1 − T−1U(C−1 + V T−1U)−1V T−1 , (4)

where
T ∈ Rn×n , U ∈ Rn×r , V ∈ Rr×n , C ∈ Rr×r .

It is the well known rank-r updating scheme that enables us to obtain the
inverse of (T + UCV ) by inverting a low rank matrix (C−1 + V T−1U). We use
Sherman-Morrison-Woodbury formula only when T−1 is available and the size
of C is much smaller than T (i.e. r ¿ n). Therefore, we can take the advantage
of solving a small size inverse matrix to gain a much large size inverse matrix.

The Hessian matrix at ith iteration is

H(i) = I + cA>SV(i)
SSV(i)ASV(i) , (5)

where ASV(i) is a sub-matrix of A formed by selecting specific rows of A by
SV (b(i), w(i), T ), and SSV(i) is a sub-squared matrix of S with corresponding
indices in SV (b(i), w(i), T ). In the updating process from H−1

(i−1) to H−1
(i) , we

need to compute H−1
K(i)

by the decremental operation, and use H−1
K(i)

to compute

H−1
(i) by the incremental operation. We can rewrite H(i−1) and H(i) as follows:

H(i−1) = HK(i) + cA>D(i)
SD(i)AD(i) ,

H(i) = HK(i) + cA>I(i)
SI(i)AI(i) .

Given H−1
(i−1) and HK(i) = H(i−1) − cA>D(i)

SD(i)AD(i) , we can apply Eq(4)
to get H−1

K(i)
. Applying Eq(4) again, we can obtain H−1

(i) easily. Based on the
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observation in Section 2, this updating scheme will becomes more efficiency than
computing H−1

(i) directly.

We analyze the time and space complexities of one Newton step for strategy
I, the time complexity is O(n2r + nr2 + r3). If r is small enough, then the
time complexity is reduced to O(n2). The space complexity is O(n2 + r2) which
is not included the data matrix itself. In fact, Sherman-Morrison-Woodbury
formula has been applied to SVM training, e.g., [9, 19]. In most of the cases,
Sherman-Morrison-Woodbury formula is applied to incremental learning, while
decremental learning is less mentioned. However, decremental learning can be
applied to some situations, for example, the k-fold cross-validation [2, 13, 15] and
its special case: leave-one-out cross-validation [2, 5].

3.2 Hessian Inverse Updating Strategy II

In the process of the deriving of Sherman-Morrison-Woodbury formula, we can
know that

[
T U
V C

]−1

=

[
M1 M2

M3 M4

]
, where





M1 = T−1 + T−1U(C − V T−1U)−1V T−1

M2 = −T−1U(C − V T−1U)−1

M3 = −(C − V T−1U)−1V T−1

M4 = (C − V T−1U)−1

T ∈ Rn×n , U ∈ Rn×r , V ∈ Rr×n , C ∈ Rr×r

.

(6)

Eq(6) enables us to obtain the inverse of
[

T U
V C

]
by inverting T and C−1 +

V T−1U . If T−1 is already known and the size of C is much smaller than T , then
Eq(6) can be computed efficiently. We want to compute the Hessian inverse by
an `sv × `sv matrix instead of an n× n matrix. As above, we know the Hessian
matrix of SSVM is Eq(5), then we substitute the Hessian matrix to Sherman-
Morrison-Woodbury formula directly, we can obtain that

H−1
(i) = I − cA>SV(i)

(S−1
SV(i)

+ cASV(i)A
>
SV(i)

)−1ASV(i) ,

where H−1
(i) ∈ Rn×n , (S−1

SV(i)
+ cASV(i)A

>
SV(i)

)−1 ∈ R`sv×`sv .

The bottleneck of inverting the Hessian matrix is changed to (S−1
SV +cASV A>SV )−1

from (I + cA>SV SSV ASV )−1. Therefore, we focus on the incremental and decre-
mental operations for (S−1

SV +cASV A>SV )−1. Note that the size of (S−1
SV +cASV A>SV )−1

will be increased when some tentative support vectors are incremented and the
size will be decreased when some tentative support vectors are decremented.
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In incremental case, we assume T−1, U , V , C are already known, and
[

T U
V C

]−1

is unknown. Then

(
S−1

SV(i)
+ cASV(i)A

>
SV(i)

)−1

=

([
SK(i) O

O SI(i)

]−1

+ c

[
AK(i)

AI(i)

] [
AK(i)

AI(i)

]>)−1

=

[
S−1

K(i)
+ cAK(i)A

>
K(i)

cAK(i)A
>
I(i)

cAI(i)A
>
K(i)

S−1
I(i)

+ cAI(i)A
>
I(i)

]−1

=
[

T U
V C

]−1

,

where S−1
SV(i)

+ cASV(i)A
>
SV(i)

has the same form as Eq(6), therefore we can use
the block matrix operation to obtain its inverse efficiently.

In decremental case, we assume
[

T U
V C

]−1

, U , V , C are already known (i.e.

M1, M2, M3, M4, U , V and C are already known), and T−1 is unknown. Consider
that

T−1U(C − V T−1U)−1V T−1 = M2M
−1
4 M3 ,

where M2, M3 and M4 are defined in Eq(6), it can be represented by M2, M3

and M4, then substitute to M1 part,

M1 = T−1 + M2M
−1
4 M3 ,

therefore,

T−1 = M1 −M2M
−1
4 M3 . (7)

We obtain T−1 by Eq(7). Then we can apply Eq(7) to decremental operation
of the Hessian inverse as follows,

(S−1
SV(i−1)

+ cASV(i−1)A
>
SV(i−1)

)−1 =

([
SK(i) O

O SD(i)

]−1

+ c

[
AK(i)

AD(i)

] [
AK(i)

AD(i)

]>)−1

=

[
S−1

K(i)
+ cAK(i)A

>
K(i)

cAK(i)A
>
D(i)

cAD(i)A
>
K(i)

S−1
D(i)

+ cAD(i)A
>
D(i)

]−1

=
[

T U
V C

]−1

=
[

M1 M2

M3 M4

]
,

then
(S−1

K(i)
+ cAK(i)A

>
K(i)

)−1 = T−1 = M1 −M2M
−1
4 M3 .
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Algorithm 1: The Algorithm for SSVM with the Updating Strategies
Input: Training set T , the initial model (b(0), w(0)) and the initial Hessian

inverse H−1
(0) (or (S−1

SV + cASV A>SV )−1) .

Repeat
– Update the new Hessian inverse H−1

(i) by applying strategy I or strategy II to

H−1
(i−1) .

– Obtain the Newton direction z(i) by z(i) = −H−1
(i) g(i) .

– Choose a step size by Armijo’s rule, i.e., λ(i) = max{1, 1
2
, 1

4
, . . . , } such that

fβ(b(i), w(i))− fβ((b(i), w(i)) + λ(i)z(i)) ≥ −δλ(i)g(i)z(i) ,

where δ ∈ (0, 1
2
) .

– Update the current model by (b(i+1), w(i+1)) = (b(i), w(i)) + λ(i)z(i) .

Until stopping criteria is satisfied.

Output: The final model (b(i+1), w(i+1)) .

We note that the matrix (S−1
SV(i−1)

+ cASV(i−1)A
>
SV(i−1)

)−1 has been permuted

according to the indices set K(i) and D(i). Thus, given (S−1
SV(i−1)

+cASV(i−1)A
>
SV(i−1)

)−1,

we can apply Eq(7) to get (S−1
K(i)

+ cAK(i)A
>
K(i)

)−1. Then applying Eq(6), we

can obtain (S−1
SV(i)

+ cASV(i)A
>
SV(i)

)−1 efficiently. Based on the observation in
Section 2, this updating scheme will become more efficiency than computing
(S−1

SV(i)
+ cASV(i)A

>
SV(i)

)−1 directly when r ¿ `sv.

We analyze the time and space complexities of one Newton iteration for
strategy II. The time and space complexity are O(`2svr+`svr2 +r3 +n`svr+nr2)
and O(`2sv +r2), respectively. Note that the space complexity is not included the
data matrix itself. In face, the decremental operation Eq(7) can be seen in [10].
However, it only discussed in the dual space (LSVM [21] and LSSVM [23]). We
show that the decremental operation Eq(7) not only can apply to solve the dual
problem, but also the primal problem.

We applied our two strategies to the SSVM training and rewrite the conven-
tional SSVM algorithm, see Algorithm 1. Instead of solving a system of linear
equations in conventional SSVM algorithm, we update the Hessian inverse di-
rectly by strategy I or II in Algorithm 1. It is the key difference between the
conventional SSVM algorithm and Algorithm 1. We use the strategy I or II to
update the new Hessian inverse H−1

(i) from H−1
(i−1) depending on whether the

number of the support vectors `sv is much smaller than the dimensionality of
dataset n. When `sv ¿ n, strategy II will be used. Otherwise, we use the strategy
I.
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Algorithm 2: Efficient version of the k-fold CV
Input: Training set T , the model (b, w) trained by the entire training set T ,

H−1 for strategy I (or (S−1
SV + cASV A>SV )−1 for strategy II)

corresponding to (b, w).

counter = 0
For each fold Tk ⊂ T ,
– Diff SV = SV (b, w, T ) \SV (b, w, T \Tk), where SV (b, w, T ) is defined in Section 2.
– If Diff SV 6= ∅,

• Apply the Algorithm 1 with the input (b, w), T \ Tk and H−1 (or
(S−1

SV + cASV A>SV )−1) .
• Return the model (b′, w′) without the instances in Tk from Algorithm 1.
• Compute the number of the misclassified in Tk by the model (b′, w′), #error.
• counter = counter + #error.

Output: k-fold CV Correctness (`− counter)/`

3.3 Apply Our Updating Strategies to Cross-Validation

Although the computational cost of the k-fold CV is prohibitively expensive,
especially for large-scale problems, there are some exist approaches to improve
the LOOCV [2, 5, 11, 13, 19, 25]. In [5, 19], there is a basic assumption that if
a data point is not an outlier, then with or without this data point will not
affect the model too much. In other words, if the difference between two training
datasets are only very few data points, the final Hessian inverses of these two
learning models should be very close. Taking this advantage, we can generate
the model for the entire dataset and use the decremental operation to have the
exact LOOCV correctness. In Algorithm 2, we describe the efficient k-fold CV
procedure for SSVM with the Hessian inverse updating strategies.

For the nonlinear case, we need to modify the Algorithm 2 as follows. If
Diff SV 6= ∅, for strategy I, we obtain the temporary Hessian inverse Ĥ−1 by
applying Eq(7) to remove the attributes corresponding to the instances in Tk

from H−1, and reduce the size of H−1; for strategy II, obtain the temporary
B̂−1 by applying Eq(4) to remove the attributes corresponding to the instances
in Tk from B−1, where B stands for (S−1

SV + cASV A>SV ) for simplicity. At the
same time, we obtain the temporary datasets T̂k, T̂ and the temporary model ŵ
by removing the attributes corresponding to the instances in Tk from Tk, T and
w, respectively. Apply the Algorithm 1 with the input (b, ŵ), T̂ \ T̂k and Ĥ−1 (or
B̂−1). Then return the model (b′, w′) without any information of the instances
in T̂k from Algorithm 1. Thus we can compute the number of the misclassified
in T̂k by the model (b′, w′).
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4 Experiments

The k-fold cross-validation (k-fold CV) and the leave-one-out cross-validation
(LOOCV) are two popular methods to estimate the generalization ability of
the model, they provide the criterion for choosing a good parameter setting
for a better generalization performance in a learning task. Both of them are
computational intensive.

In this section, we demonstrated the effectiveness of SSVM with the Hessian
inverse updating strategies on several datasets (see Table 1). Two different types
of datasets are chosen to demonstrate the advantage of two different Hessian
inverse updating strategies. The first one is ` À n type and the second one is
` ¿ n type. In the nonlinear case, we generate an `×` kernel matrix by nonlinear
mapping as our training data to show the effectiveness of two Hessian inverse
updating strategies.

All our experiments were performed using the MATLAB(R2007b). The per-
sonal computer consists of 3.00GHz CPU, 3.24GB RAM. In our experiments,
we focus on the training speed and will not too worry about the accuracy. Thus
we avoid the tuning procedure and set the penalty c equal to 1. For the nonlin-
ear case, we use the radial basis function kernel and set γ = 0.1. We compared
our updating strategies with original SSVM and LIBSVM [7]. We reserve 2GB
RAM of cache for LIBSVM in all experiments. The cache size will affect the LIB-
SVM training speed. All tables in this section, “SSVM” means original SSVM,
“SSVMI” means that the strategy I is used in SSVM and “SSVMII” means that
the strategy II is used. We indicate the best results in bold face.

In http://www.work.caltech.edu/∼htlin/program/libsvm/, one part of this
web page demonstrates how to do decremental learning in LIBSVM efficiently.
We use this strategy to compute the LOOCV, and its implementation is done
with LIBSVM 3.0. Since LIBSVM doesn’t have special treatment for the k-fold
CV, we obtain the results of the k-fold CV by the default setting and set 2GB
cache for LIBSVM.

In Table 2, we can see that the computational cost of the LOOCV can be
significantly reduced if a good initial solution and the Hessian inverse (or(S−1

SV +
cASV A>SV )−1) are available. These experiments indicate that the incremen-
tal/decremental schemes are the efficient approach for performing the LOOCV
[19]. In Table 2, it also shows that the accuracies of SSVM, SSVMI and SSVMII

Table 1. Datasets description

#instances #features

Face 6977 361
Ionosphere 351 34
Pima 768 8
Colon 62 2000
Leukemia 72 7129
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Table 2. The consuming time and accuracies of the LOOCV of SSVM, SSVMI, SSVMII

and LIBSVM on several datasets

LOOCV - Time (sec.) - - Accuracy (%) -

(Linear) SSVM SSVMI SSVMII LIBSVM SSVM SSVMI SSVMII LIBSVM

Face 22.41 14.32 25.48 1041.11 97.73 97.73 97.73 98.08
Ionosphere 0.16 0.09 0.23 0.53 88.89 88.89 88.89 87.18
Pima 0.37 0.23 8.86 5.53 76.56 76.56 76.56 76.56
Colon 38.81 2.97 0.59 0.64 83.87 83.87 83.87 80.65
Leukemia 89.37 62.72 2.61 2.42 98.61 98.61 98.61 97.22

(Nonlinear) SSVM SSVMI SSVMII LIBSVM SSVM SSVMI SSVMII LIBSVM

Face 4508.58 1652.27 1002.83 35786.39 99.76 99.76 99.76 99.83
Ionosphere 1.57 0.87 0.41 0.94 95.73 95.73 95.73 93.73
Pima 95.22 69.77 63.72 19.89 77.21 77.21 77.21 75.52

are the exactly same. Similarly, both strategies also can applied to perform the
k-fold CV efficiently, and we set k equal to 10 in our experiments of the k-fold
CV. In Table 3, it can be seen that the experimental results of the k-fold CV
are very similar to the results of the LOOCV experiments.

5 Conclusions

In this paper, we proposed two Hessian inverse updating strategies to improve
the computational cost of finding the Hessian inverse. In the cross-validation
procedure, we introduced the strategies for the leave-one-out cross-validation and
the k-fold cross-validation. If the number of the indices migrate across the SV set
and NSV set at each fold is much smaller than dimensionality of the input space,
then the cost of updating the Hessian inverse and finding the Newton direction
will be reduced dramatically. This benefit will become more significantly when
the data is in a highly dimensional space.

Our updating strategies can be applied to any learning algorithm which it
solved iteratively and involved the Hessian inverse in each iteration, such as ε-
SSVR, LSSVM, Training SVM in the Primal, Second-Order Online Perceptron
Algorithm and so forth.

Acknowledgments. We would like to thank the anonymous referees for pro-
viding constructive comments.
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Table 3. The consuming time and accuracies of the 10-fold CV of SSVM, SSVMI,
SSVMII and LIBSVM on several datasets

10-fold CV - Time (sec.) - - Accuracy (%) -

(Linear) SSVM SSVMI SSVMII LIBSVM SSVM SSVMI SSVMII LIBSVM

Face 4.57 3.94 5.00 43.41 97.76 97.76 97.76 98.01
Ionosphere 0.07 0.04 0.09 0.11 87.68 87.68 87.68 87.46
Pima 0.04 0.03 0.66 0.19 76.41 76.41 76.41 76.56
Colon 21.73 4.77 0.37 0.33 83.75 83.75 83.75 82.26
Leukemia 196.98 40.30 1.03 0.97 97.80 97.80 97.80 97.22

(Nonlinear) SSVM SSVMI SSVMII LIBSVM SSVM SSVMI SSVMII LIBSVM

Face 314.51 75.11 36.37 186.53 99.72 99.72 99.72 99.81
Ionosphere 0.38 0.23 0.15 0.12 95.54 95.54 95.54 93.73
Pima 3.48 3.15 3.83 0.42 77.11 77.11 77.11 75.39
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